Bu kapsamda Montevideo şehrindeki duruma uygulanan sezgisel ötesi yaklaşımın sonuçları analiz ve rapor edilmiştir. Optimal çözümün ve mevcut sistemin sıklığı hakkında bilgi bulunmamaktadır. Ayrıca testin ana amacı bir başlangıç (gerçek) çözümü geliştirmek için algoritma yeterliliğinin ve bu gibi bir gelişime ulaşmak için gerekli uygulama süresinin gözlemlenmesidir. Başlangıç çözümü bütün hatlarda aynı sıklığa göre kurulmuş ve filo boyutuna karşılık gelen değer en yüksek sınırına (1500 otobüs) mümkün olduğunca yaklaştırılmıştır. Bu yolla bütün hatlara Montevideo şehir durumu θ dizisinin 4 numaralı sıklığı olarak 1/12 atanmış ve buna karşılık gelen filo boyutu 1524 olarak alınmış olup bu boyut nispeten fizibıl olmayan bir çözüm türetmektedir.
Algoritma tekil olarak çalıştırılmış, iterasyon sayısı 500 olarak sabitlenmiş, her on iterasyonda yaklaşık 90 dakikalık işlem süresi gözlemlenmiştir. Başlangıç çözümüne göre gelişim oranı %1,7 olup geliştirilmiş çözümün birçok hattının sıklığı değişmiştir. Ayrıca ezgisel ötesi yaklaşım ile başlangıç çözümü geliştirilebilir iken gelişim kısmi araştırma iterasyon sayısındaki artışa nazaran daha yüksek olarak gerçekleşmektedir. Şekil 4 algoritmanın iterasyon sayısına göre gelişimini göstermektedir. Şekil 4’de hem modelin amaç değerleri (amaç fonksiyonu tarafından ortaya konan) ve hem de sezgisel ötesi yaklaşımın bir kısmi gelişim ile tamamlanan çeşitli döngülere sahip olduğu gözlemlenmektedir. Dolayısı ile Şekil 4’de kısıtlar tarafından empoze edilen maksimum değer çevresinde salınım gösteren bir filo boyutu gözlemlenmekte olup fizibıl alanın yanı sıra bir algoritma araştırmasına imkân veren bir mekanizma tasarımı ile sonuçlanmaktadır.
Sonuç olarak Montevideo için elde edilen gelişim oranı Rivera için elde edilen gelişim oranından daha düşük çıktığı not edilmelidir. Her hâlükârda gelişim yüzdesi, referans çalışmalarından elde edilenler ile halen aynı aralıkta olup %1,2-%5,0’dir. Uygulama süresi ile ilgili olarak algoritma, metodoloji amacının (stratejik ve taktik planlama düzeylerinde) yanı sıra durumun detaylı derece ve boyutunu hesaba katan kabul edilebilir bir performansa sahiptir.
Sıklık optimizasyon problemi ile ilgili olarak yeni bir formülasyon ve yeni bir çözüm yöntemi önerilmiştir. Referans çalışmasında önerilmiş olan modele dayalı olarak, bu tarz çalışmalarda önerilen aynı düzeyli doğrusal olmayan yaklaşımlara denk olan bir karma tam sayılı doğrusal programlama (MILP) formülasyonu türetilmiştir. Formülasyonun yapısı karma tam sayılı doğrusal programlama (MILP) tekniklerini kullanarak probleme kesin çözüm getirmeye elverişlidir.
Önerilen model vasıtası ile gerçek zamanlı küçük boyutlu şehirler ile ilgili durumlar için, optimal ya da optimale yakın çözümler (hassasiyet hesaplamaları ile) geliştirilebilir. Dikkate alınan toplu ulaştırma sistemi 13 hattan oluşmasına karşın, modelin uygulanması ile %3 civarında bir gelişim kaydedilmiştir. Bu nokta, küçük durumlarda bile sistemin verimliliğin arttırılması için açık bir kapı olduğunu göstermektedir. Plancının deneyimlerinden kaynaklı manuel çözümlere karşın, bu çözümler gerektiği ölçüde optimal değildir ayrıca optimizasyon modeli değişimler önerebilir, zira kesin ya da sezgisel değildirler. Ayrıca kaydedilen gelişim yüzdelerinin literatürdeki raporlanan örnekleri ile benzer olduğu da vurgulanmalıdır.