28.01.2019, 14:55

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık-2

Ülkemizde demiryolu araçlarında kullanılan akıllı sistemler, genellikle yurt dışı üreticilerden temin edilmektedir. Ancak bilhassa savunma ve demiryolu sektöründe çok başarılı Ar-Ge çalışmaları olan bir yerli firmamız raylı sistem araçları için birçok akıllı sistemi geliştirerek, üretime başlamıştır. Bu akıllı sistemler yüksek hızlı tren setleri de dâhil olmak üzere değişik tür araçlarda başarıyla kullanılmaya başlanmıştır. 

İstanbul özelinde konuya baktığımızda, son yıllarda ‘modlararası entegrasyon ve dengeli modal dağılım’ konularında iyileştirici çalışmalar yapıldığı bilinmektedir. Ancak buna karşın henüz istenilen seviyeye gelinememiş olup, genel anlamda orta ve uzun vadeli hedefler kapsamında nispeten iyileştirmeler gerçekleştirilebilmektedir. Bunları örneklendirmek gerekirse; yapılan metro yatırımları genel anlamda bahsini ettiğimiz konularda bir iyileştirmeye işaret etmektedir, ancak bunun yanı sıra kentiçi deniz ulaşımında istenen seviyeye gelinememesi, tam tersine modal dağılımda deniz ulaşımının payının düşmesi göze çarpmaktadır. İstanbul gibi kendine has bir iç su yolu olan ve denizle iç içe olan bir şehirde, ulaştırmada denizyolundan faydalanılamaması ve modal dağılımda denizyolunun ancak %1.5’lar seviyesinde yer alması düşünülemez. Burada; İstanbul’ un çok yönlü ve çok merkezli olarak sürekli büyümesi, bu çerçevede şehrin birçok bölgesinin karasal bir alanda büyümesi gerçekliği elbette ki göz önünde bulundurulmalıdır.

Toplu Ulaşım; daha az yer kaplayan, daha denetlenebilir, daha güzergahlandırılabilir bir hat boyunca ‘disiplinli ve konforlu’ bir sistemi ortaya koyabilme potansiyeli ile ‘trafik güvenliği’ ne önemli derecede katkı sağlayabilme kabiliyetindedir.

Bu tarz çalışmalar kapsamında örneğin durak ve cadde kesimleri gibi seyahat yolu tarafından verilen bir dizi toplu taşıma hattı için müteakip otobüsler arasındaki zaman aralığının hesaplanması hedefiyle toplu taşıma sıklık optimizasyon problemi çalışılmaktadır. Çözümün verili bir kalkış-varış talebi ve uygun otobüs filosu kısıtlarını sağlaması beklenmektedir. Bu kapsamda orijinal olarak formüle edilmiş olan aynı seviyeli lineer olmayan bir mevcut model için yeni bir karma tam sayılı doğrusal programlama (MILP) formülasyonu önerilmektedir. Önerilen formülasyon tam sayılı doğrusal programlama (MILP) tekniklerini kullanarak gerçek küçük boyutlu problem örneklerini optimal olarak çözme yetkinliğine sahiptir. Daha büyük örneklerin çözülmesi için, doğruluğu ihtimal dâhilindeki kesin sonuçlarla karşılaştırılarak hesaplanan sezgisel ötesi yaklaşım önerilmektedir. Hem kesin ve hem de yaklaşık çözümler13 hattan oluşan toplu taşıma sistemi ile küçük bir şehirle ilgili mevcut durumun kullanılması ile sınanmaktadır. Söz konusu sistemin gelişiminin büyüklüğü, diğer gerçek sistemler ile ilgili olarak literatürde raporlanan gelişimler ile karşılaştırmak sureti ile önerilen yöntemin uygulanması ile elde edilmektedir. Aynı zamanda sezgisel ötesi yaklaşımın 130 hattan fazla hattı içeren daha büyük boyutlu gerçek bir duruma uygulanabilirliği de incelenmektedir.

Bir toplu taşıma sistemi tasarlanırken, plancılar kullanıcıların fiyat, işletim ve seyahat süresi parametrelerinin parasal maliyetlerince hesaplanmış olan sistem maliyetlerinde etkisi olan kararlar almaktadır. Otobüse dayalı sistemlerde, literatür toplu ulaştırma sistemi tasarlanmasında 5 aşama tanımlamaktadır: güzergâh ağı tasarımı, sıklığın belirlenmesi, zaman çizelgesi tasarımı, filo tayini ve personel atanması. Gerçek sistemlerde genellikle bu aşamalar bir silsile halinde icra edilmekte olup verili bir aşamada alınan kararlar sonraki aşamalardaki kararları da sıralı bir şekilde etkilemektedir. Aynı zamanda bu kararlar planlamanın stratejik (uzun vadeli), taktik (orta vadeli) ya da operasyonel (kısa vadeli) bağlamda olmasına göre değişen planlama bakış açıları ile karara bağlanmaktadır.

Sıklık tayini problemi, hat üzerindeki sıralı otobüsler arasında, O-D matrisince belirlenen talepleri ve rotaları (cadde kesimleri ve otobüs durakları) bazlı hesabı ifade etmektedir. Toplu ulaştırma sisteminin stratejik planlaması süresince (özellikle hat rotaları, örneğin güzergâh ağları tasarlanırken) sıklığın bir ön düzenlemesine ihtiyaç duyulmaktadır. Aynı zamanda taktik planlama süresince, sıklıkları güzergâh ağı tasarımlarındaki değişimleri karşılayacak şekilde ya da günün farklı zamanları ve yılın farklı mevsimlerine göre değişen talebe göre ayarlamak gerekmektedir. Sıklıklar hem kullanıcıyı (bekleme süreleri, hat kapasiteleri) ve hem de işletimciyi (gerek duyulan filo boyutuna göre hesaplanan işletme maliyetleri) etkilemektedir.

Sıklık tayini problemine literatürde bir optimizasyon problemi olarak yaklaşılmakta olup genellikle amaç fonksiyonu, diğer altyapı ve politik kısıtlarla birlikte filo boyutu kısıtı altında, kullanıcının toplam seyahat süresinin (yürüme, sefer ve bekleme süreleri) minimizasyonunu ortaya koymaktadır. Sıklık optimizasyon modelleri, kullanıcı bakış açısından (tipik olarak bekleme süresi) sistemin performansı ile ilgili ölçütleri içermesi gerektiğinden, otobüs hatları dizisine göre kullanıcı davranışının bir alt modelini içermelidirler. Bu gibi bir al model, atama alt modeli olarak bilinmekte olup genellikle karmaşık bir formülasyon ve çözüm yöntemine sahip olmakta, bu durum özellikle otobüs kapasitesi etkisinin kullanıcı davranışı modellemesinde hesaba katılmaktadır. Söz konusu karmaşıklık, bütün bir sıklık optimizasyon modeli karmaşıklığının önemli bir kısmını meydana getirmektedir. Dahası toplu ulaştırmadaki bir atama sisteminin doğruluğu birçok durumda uygulandığı andaki başlama göre şekillenmektedir. 

Yorumlar (0)
banner117
5
kısa süreli hafif yoğunluklu yağmur
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 25 65
2. Fenerbahçe 25 61
3. Samsunspor 25 47
4. Beşiktaş 24 44
5. Eyüpspor 25 40
6. Göztepe 24 36
7. Başakşehir 24 36
8. Rizespor 25 33
9. Trabzonspor 24 32
10. Gaziantep FK 24 32
11. Kasımpaşa 25 32
12. Alanyaspor 25 31
13. Antalyaspor 25 30
14. Konyaspor 25 28
15. Bodrum FK 25 24
16. Sivasspor 25 24
17. Kayserispor 24 24
18. Hatayspor 24 13
19. A.Demirspor 25 -2
Takımlar O P
1. Kocaelispor 28 57
2. Karagümrük 28 49
3. Gençlerbirliği 28 48
4. Bandırmaspor 28 46
5. Erzurumspor 28 45
6. İstanbulspor 28 43
7. Keçiörengücü 28 42
8. Boluspor 28 41
9. Amed Sportif 28 40
10. Pendikspor 28 40
11. Ahlatçı Çorum FK 28 39
12. Iğdır FK 28 39
13. Ümraniye 28 38
14. Ankara Keçiörengücü 28 37
15. Esenler Erokspor 28 37
16. Sakaryaspor 28 35
17. Şanlıurfaspor 28 33
18. Manisa FK 28 33
19. Adanaspor 28 27
20. Yeni Malatyaspor 28 -21
Takımlar O P
1. Liverpool 28 67
2. Arsenal 27 54
3. Nottingham Forest 27 48
4. M.City 27 47
5. Chelsea 27 46
6. Newcastle 27 44
7. Bournemouth 27 43
8. Brighton 27 43
9. Fulham 27 42
10. Aston Villa 28 42
11. Brentford 27 38
12. Crystal Palace 27 36
13. Tottenham 27 33
14. M. United 27 33
15. West Ham United 27 33
16. Everton 27 32
17. Wolves 27 22
18. Ipswich Town 27 17
19. Leicester City 27 17
20. Southampton 27 9
Takımlar O P
1. Barcelona 26 57
2. Atletico Madrid 26 56
3. Real Madrid 26 54
4. Athletic Bilbao 26 48
5. Villarreal 25 44
6. Real Betis 26 38
7. Rayo Vallecano 26 36
8. Mallorca 26 36
9. Real Sociedad 26 34
10. Celta Vigo 26 33
11. Osasuna 26 33
12. Sevilla 26 33
13. Girona 26 32
14. Getafe 26 30
15. Espanyol 25 27
16. Leganes 26 27
17. Las Palmas 26 24
18. Valencia 26 24
19. Deportivo Alaves 26 23
20. Real Valladolid 26 16