11.03.2019, 15:53

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık-6

Kullanıcı davranışının gösteriminde, bir atama alt modeli dikkate alınmaktadır. Bu model kullanıcının bir dizi toplu ulaştırma hattını kullanarak, bir kalkış noktasında bir varış noktasına kendilerini taşıma yolunu ifade etmektedir. Bu durum sistem performansının; kullanıcının karşı karşıya kaldığı otobüs işgal oranı ve bekleme süresi adı ile hesaplanması için gereklidir. Kullanıcıların sıklıklara bağlı kararlarının, bütün bir optimizasyon modelinin karar değişkenleri olduklarından dolayı, atama alt modeli ile fazlasıyla bağlantılı bir unsur olduğunu da not etmekte gerekmektedir. 

Referans çalışmasından daha önceki yıllardaki bu tarz çalışmalarda önerilmiş olan ve optimal stratejiler olarak adlandırılan atama modelleri de dikkate alınmaktadır. Uygulama esnasında bir strateji kurallar dizisi olarak tanımlanmakta olup söz konusu strateji kullanıcının varış noktasına erişebilmesi ile ilgilidir. G olarak adlandırılan grafiğe göre ve verili bir O-D çifti olan k için, A olarak adlandırılan bir yay alt kümesi gibi bir strateji söz konusu olup OK’den DK’ye seyahatler için, kullanıcıların öncelik olarak belirlediği bütün hatları ifade etmektedir. Model, verili bir kullanıcının kendi toplam seyahat süresini minimize eden bir stratejiyi tercih ettiği kabulünü yapmaktadır. Bunu yapmak için söz konusu kullanıcı kalkış ve varış otobüs istasyonlarını (hatta aktarmalar da dâhil) birbirine bağlayan bütün ihtimal dâhilindeki hatlar arasında daha cazibeli olan öncelikli (seyahatin kalkış noktasından daha erken hareket eden hat gibi) hatlar dizisini seçecektir. Bu süreçte yolcu sistemin bütün hatlarındaki seyir seyahat süresine bağlı bilgiyi hesaba katmakta, aynı zamanda bütün hatların sıklığını bilmekte (G grafiğindeki seyahat yaylarının maliyetlerinin verilmesiyle) bekleme süresini hesaplamaya ihtiyaç duymaktadır. Otobüs istasyonunda beklerken kullanıcı, öncelik olarak belirlediği cazibeli hatlardan dizisine ait olan hatlardan birisinden gelen ilk otobüse binecektir. Bir strateji eğer toplam öngörülen seyahat süresini minimize ediyorsa, optimaldir. 

Bir atama modelinin asli kabulü, bekleme süresi hesap kabulleri ve kullanıcının hat seçimleridir. Literatürdeki genel kabulü ile bir hat dizisi için bir istasyondaki yolcu bekleme süresi R = (r1,………..,rm) olup buna karşılık gelen sıklıklar F = (f1,…………,fm) iken ortalama bir değere göre rastgele değişken ile modellenebilir. Burada β hizmet düzenliliği ile ilgili kabullere bağlı parametredir. Dahası yolcuların istasyona ulaşan ilk otobüse bineceği (R serisinin güzergâhlarında çalışan otobüsler arasında) ve sıklık dağılım kuralı olarak bilinen güzergâh kullanımı olasılığı kabulleri yapılmaktadır.

Vn (n düğüm noktasındaki akım) ve Xa (optimal stratejiye ait a yayı olup bir çift değişkeni ifade etmektedir) değişkenlerinin gösterimi üzerine atama problemi, bekleme süresi çözümlemesi ve sıklık dağılım kuralı içeren amaç fonksiyonunda seyahat süresinin minimizasyonunu formüle edebilmektedir, Va a yayında sefere karşılık gelen hattın sıklığı (otobüs/zaman birimi) olan n düğüm noktası ve fa’dan üretilen yaylar olan a yayı boyunca talep akışının miktarını göstermektedir. Bu optimizasyon problemi doğrusal (lineer) olmayan çözümlemeler ve ikili değişkenler içermekte, bunların bütünlüklü detaylarına ilgili çalışmalarda ulaşılabilmektedir. Bu tarz çalışmalar bağlamında, değişkenlerdeki bir değişimin ortalaması ve sonuç modelinin fizibıl yerleşiminin hesaba katılması ile ilgilenilmekte, model bu temelde basitleştirilmeye çalışılmaktadır. 

İlgili hesaplamalardan kullanıcıların sefer seyahat süresi ve bekleme süresi toplamını minimize edecek şekilde davranmayı amaçladıkları anlaşılmaktadır. Bu noktadaki kısıt akım korunumu olup bütün talebin varış noktasına ulaşabilmesi gerektiği anlamına gelmektedir. Eğer a yayı optimal stratejinin bir parçası değil ise Va sıfır olmakta, optimal çözümleme dahilindeki yaylar için, kısıt sıklık dağılımı kuralı çözümlemesinin yeniden yapılandırılması ve denklik kuralına göre teyit edilmektedir. 

Bu formülasyon doğrusaldır (lineer) ve en kısa yol problemine çok benzemektedir. Farklılık, amaç fonksiyonunun düğüm noktalarını ifade eden bir terim içermesi ile verili bir istasyon ve varış noktasından geçen cazibe hatları arasındaki talebin dağılımını gösteren bir kısıtı içermesidir. Bu kısıttan dolayı atamam probleminin çözümü grafikte tekil bir yol olmayıp, kalkıştan varışa farklı rotaları içeren bir hiper yoldur. 

Sıklık optimizasyonu için söz konusu model 1995 yılında yapılan çalışmalara dayanmakta olup doğrusal olmayan ve aynı düzeyli bir formülasyon yapısına sahiptir. Önerideki anahtar farklılık ise, tekil düzeyli bir yapıya sahip olan belirli koşullar altındaki doğrusal formülasyonun edinilmesini sağlayan belirtilen grafiğin yardımcı yapısına giriş yapmasıdır. 

Bu kapsamda herhangi bir hattın sıklığı için olası değeri temsilen, negatif değer almayan her bir θi için verili θ = (θ1,……..…….,θm) dizisinin ortalamasınca sıklık aralıklarının ayrık tanımı yapılmaktadır. Sıklıkların fizibıl bir dizisi her bir hat için bir θ değeri oluşturmaktadır. Ayrıca G grafiği için yeni bir yapı tanımlanmış olup bu yapıda her bir θ değeri için bir sefer yayına sahip olan verili bir istasyonca her bir hattan geçilmektedir. Şekil 2’de bu gibi bir yapı Şekil 1’deki örneğin üzerinden ortaya konmakta ve 3 ayrı sıklığa sahip bir θ örneği üzerinden gidilmektedir. Sıklık aralıklarının ayrıklaştırılması yolu ile bir hassasiyet kaybı oluştuğu da not edilmelidir. Diğer taraftan gerçek sistemlerde hizmet koordinasyonu ve filo yönetimi konularına bağlı olarak indirgenmiş bir sıklık değerleri dizisinin hesaba katılması için söz konusu durum uygundur. Literatürde bu noktada değerlendirmeler devam etmektedir. 
 
Şekil 2. Ayrışık Sıklık Alanlarını İfade Eden Grafik Model

Ardından eğer l hattında θf sıklığı ortaya çıkıyorsa, ylf ikili değişkeni uygulanmaktadır. Bu tanımlamalar ve belirlenen atama alt modeline dayalı olarak, B’nin filo boyutundaki üst limit, f(a)’nın söz konusu yaya karşılık gelen hattı gösteren l(a) ve a yayınca ifade edilen θ sıklığındaki endeksi gösterdiği durumda sıklık optimizasyon modeli formüle edilmektedir. OD çiftinin ikamesi olarak k endeksinin eklendiği de not edilmelidir. 
Yorumlar (0)
banner117
5
kısa süreli hafif yoğunluklu yağmur
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 29 74
2. Fenerbahçe 29 71
3. Samsunspor 30 51
4. Eyüpspor 30 50
5. Beşiktaş 29 48
6. Başakşehir 29 45
7. Gaziantep FK 29 42
8. Antalyaspor 30 40
9. Trabzonspor 29 39
10. Göztepe 29 39
11. Kasımpaşa 30 39
12. Konyaspor 30 37
13. Kayserispor 29 36
14. Bodrum FK 30 34
15. Rizespor 29 34
16. Sivasspor 30 31
17. Alanyaspor 29 31
18. Hatayspor 29 19
19. A.Demirspor 29 -2
Takımlar O P
1. Kocaelispor 34 69
2. Karagümrük 34 60
3. Erzurumspor 34 58
4. Gençlerbirliği 34 58
5. Bandırmaspor 34 56
6. İstanbulspor 34 52
7. Keçiörengücü 34 51
8. Ahlatçı Çorum FK 34 51
9. Amed Sportif 34 51
10. Boluspor 34 49
11. Iğdır FK 34 49
12. Esenler Erokspor 34 49
13. Ümraniye 34 47
14. Pendikspor 34 45
15. Sakaryaspor 34 45
16. Ankaragücü 34 39
17. Manisa FK 34 38
18. Şanlıurfaspor 34 37
19. Adanaspor 34 27
20. Yeni Malatyaspor 34 -21
Takımlar O P
1. Liverpool 32 76
2. Arsenal 32 63
3. Nottingham Forest 32 57
4. Newcastle 31 56
5. M.City 32 55
6. Chelsea 32 54
7. Aston Villa 32 54
8. Bournemouth 32 48
9. Fulham 32 48
10. Brighton 32 48
11. Brentford 32 43
12. Crystal Palace 31 43
13. Everton 32 38
14. M. United 32 38
15. Tottenham 32 37
16. Wolves 32 35
17. West Ham United 32 35
18. Ipswich Town 32 21
19. Leicester City 32 18
20. Southampton 32 10
Takımlar O P
1. Barcelona 31 70
2. Real Madrid 31 66
3. Atletico Madrid 31 63
4. Athletic Bilbao 31 57
5. Villarreal 30 51
6. Real Betis 31 48
7. Celta Vigo 31 43
8. Mallorca 31 43
9. Real Sociedad 31 41
10. Rayo Vallecano 31 40
11. Getafe 31 39
12. Osasuna 31 38
13. Valencia 31 37
14. Sevilla 31 36
15. Espanyol 30 35
16. Girona 31 34
17. Deportivo Alaves 31 30
18. Las Palmas 31 29
19. Leganes 31 28
20. Real Valladolid 31 16