11.03.2019, 15:53

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık-6

Kullanıcı davranışının gösteriminde, bir atama alt modeli dikkate alınmaktadır. Bu model kullanıcının bir dizi toplu ulaştırma hattını kullanarak, bir kalkış noktasında bir varış noktasına kendilerini taşıma yolunu ifade etmektedir. Bu durum sistem performansının; kullanıcının karşı karşıya kaldığı otobüs işgal oranı ve bekleme süresi adı ile hesaplanması için gereklidir. Kullanıcıların sıklıklara bağlı kararlarının, bütün bir optimizasyon modelinin karar değişkenleri olduklarından dolayı, atama alt modeli ile fazlasıyla bağlantılı bir unsur olduğunu da not etmekte gerekmektedir. 

Referans çalışmasından daha önceki yıllardaki bu tarz çalışmalarda önerilmiş olan ve optimal stratejiler olarak adlandırılan atama modelleri de dikkate alınmaktadır. Uygulama esnasında bir strateji kurallar dizisi olarak tanımlanmakta olup söz konusu strateji kullanıcının varış noktasına erişebilmesi ile ilgilidir. G olarak adlandırılan grafiğe göre ve verili bir O-D çifti olan k için, A olarak adlandırılan bir yay alt kümesi gibi bir strateji söz konusu olup OK’den DK’ye seyahatler için, kullanıcıların öncelik olarak belirlediği bütün hatları ifade etmektedir. Model, verili bir kullanıcının kendi toplam seyahat süresini minimize eden bir stratejiyi tercih ettiği kabulünü yapmaktadır. Bunu yapmak için söz konusu kullanıcı kalkış ve varış otobüs istasyonlarını (hatta aktarmalar da dâhil) birbirine bağlayan bütün ihtimal dâhilindeki hatlar arasında daha cazibeli olan öncelikli (seyahatin kalkış noktasından daha erken hareket eden hat gibi) hatlar dizisini seçecektir. Bu süreçte yolcu sistemin bütün hatlarındaki seyir seyahat süresine bağlı bilgiyi hesaba katmakta, aynı zamanda bütün hatların sıklığını bilmekte (G grafiğindeki seyahat yaylarının maliyetlerinin verilmesiyle) bekleme süresini hesaplamaya ihtiyaç duymaktadır. Otobüs istasyonunda beklerken kullanıcı, öncelik olarak belirlediği cazibeli hatlardan dizisine ait olan hatlardan birisinden gelen ilk otobüse binecektir. Bir strateji eğer toplam öngörülen seyahat süresini minimize ediyorsa, optimaldir. 

Bir atama modelinin asli kabulü, bekleme süresi hesap kabulleri ve kullanıcının hat seçimleridir. Literatürdeki genel kabulü ile bir hat dizisi için bir istasyondaki yolcu bekleme süresi R = (r1,………..,rm) olup buna karşılık gelen sıklıklar F = (f1,…………,fm) iken ortalama bir değere göre rastgele değişken ile modellenebilir. Burada β hizmet düzenliliği ile ilgili kabullere bağlı parametredir. Dahası yolcuların istasyona ulaşan ilk otobüse bineceği (R serisinin güzergâhlarında çalışan otobüsler arasında) ve sıklık dağılım kuralı olarak bilinen güzergâh kullanımı olasılığı kabulleri yapılmaktadır.

Vn (n düğüm noktasındaki akım) ve Xa (optimal stratejiye ait a yayı olup bir çift değişkeni ifade etmektedir) değişkenlerinin gösterimi üzerine atama problemi, bekleme süresi çözümlemesi ve sıklık dağılım kuralı içeren amaç fonksiyonunda seyahat süresinin minimizasyonunu formüle edebilmektedir, Va a yayında sefere karşılık gelen hattın sıklığı (otobüs/zaman birimi) olan n düğüm noktası ve fa’dan üretilen yaylar olan a yayı boyunca talep akışının miktarını göstermektedir. Bu optimizasyon problemi doğrusal (lineer) olmayan çözümlemeler ve ikili değişkenler içermekte, bunların bütünlüklü detaylarına ilgili çalışmalarda ulaşılabilmektedir. Bu tarz çalışmalar bağlamında, değişkenlerdeki bir değişimin ortalaması ve sonuç modelinin fizibıl yerleşiminin hesaba katılması ile ilgilenilmekte, model bu temelde basitleştirilmeye çalışılmaktadır. 

İlgili hesaplamalardan kullanıcıların sefer seyahat süresi ve bekleme süresi toplamını minimize edecek şekilde davranmayı amaçladıkları anlaşılmaktadır. Bu noktadaki kısıt akım korunumu olup bütün talebin varış noktasına ulaşabilmesi gerektiği anlamına gelmektedir. Eğer a yayı optimal stratejinin bir parçası değil ise Va sıfır olmakta, optimal çözümleme dahilindeki yaylar için, kısıt sıklık dağılımı kuralı çözümlemesinin yeniden yapılandırılması ve denklik kuralına göre teyit edilmektedir. 

Bu formülasyon doğrusaldır (lineer) ve en kısa yol problemine çok benzemektedir. Farklılık, amaç fonksiyonunun düğüm noktalarını ifade eden bir terim içermesi ile verili bir istasyon ve varış noktasından geçen cazibe hatları arasındaki talebin dağılımını gösteren bir kısıtı içermesidir. Bu kısıttan dolayı atamam probleminin çözümü grafikte tekil bir yol olmayıp, kalkıştan varışa farklı rotaları içeren bir hiper yoldur. 

Sıklık optimizasyonu için söz konusu model 1995 yılında yapılan çalışmalara dayanmakta olup doğrusal olmayan ve aynı düzeyli bir formülasyon yapısına sahiptir. Önerideki anahtar farklılık ise, tekil düzeyli bir yapıya sahip olan belirli koşullar altındaki doğrusal formülasyonun edinilmesini sağlayan belirtilen grafiğin yardımcı yapısına giriş yapmasıdır. 

Bu kapsamda herhangi bir hattın sıklığı için olası değeri temsilen, negatif değer almayan her bir θi için verili θ = (θ1,……..…….,θm) dizisinin ortalamasınca sıklık aralıklarının ayrık tanımı yapılmaktadır. Sıklıkların fizibıl bir dizisi her bir hat için bir θ değeri oluşturmaktadır. Ayrıca G grafiği için yeni bir yapı tanımlanmış olup bu yapıda her bir θ değeri için bir sefer yayına sahip olan verili bir istasyonca her bir hattan geçilmektedir. Şekil 2’de bu gibi bir yapı Şekil 1’deki örneğin üzerinden ortaya konmakta ve 3 ayrı sıklığa sahip bir θ örneği üzerinden gidilmektedir. Sıklık aralıklarının ayrıklaştırılması yolu ile bir hassasiyet kaybı oluştuğu da not edilmelidir. Diğer taraftan gerçek sistemlerde hizmet koordinasyonu ve filo yönetimi konularına bağlı olarak indirgenmiş bir sıklık değerleri dizisinin hesaba katılması için söz konusu durum uygundur. Literatürde bu noktada değerlendirmeler devam etmektedir. 
 
Şekil 2. Ayrışık Sıklık Alanlarını İfade Eden Grafik Model

Ardından eğer l hattında θf sıklığı ortaya çıkıyorsa, ylf ikili değişkeni uygulanmaktadır. Bu tanımlamalar ve belirlenen atama alt modeline dayalı olarak, B’nin filo boyutundaki üst limit, f(a)’nın söz konusu yaya karşılık gelen hattı gösteren l(a) ve a yayınca ifade edilen θ sıklığındaki endeksi gösterdiği durumda sıklık optimizasyon modeli formüle edilmektedir. OD çiftinin ikamesi olarak k endeksinin eklendiği de not edilmelidir. 
Yorumlar (0)
banner117
15
açık
banner159
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 10 28
2. Samsunspor 11 25
3. Fenerbahçe 10 23
4. Beşiktaş 10 20
5. Eyüpspor 11 19
6. Sivasspor 11 17
7. Göztepe 10 15
8. Başakşehir 10 15
9. Kasımpasa 11 14
10. Konyaspor 11 14
11. Trabzonspor 10 12
12. Gaziantep FK 10 12
13. Bodrumspor 11 11
14. Antalyaspor 11 11
15. Alanyaspor 11 10
16. Rizespor 10 10
17. Kayserispor 10 9
18. Hatayspor 10 3
19. A.Demirspor 10 2
Takımlar O P
1. Erzurumspor 11 22
2. Kocaelispor 11 22
3. Bandırmaspor 11 21
4. Karagümrük 11 18
5. Igdir FK 11 18
6. Boluspor 11 18
7. Esenler Erokspor 11 17
8. Ümraniye 11 17
9. Pendikspor 11 17
10. Ankaragücü 11 16
11. Ahlatçı Çorum FK 11 16
12. Şanlıurfaspor 11 15
13. Gençlerbirliği 11 15
14. Manisa FK 11 14
15. Keçiörengücü 11 14
16. İstanbulspor 11 13
17. Sakaryaspor 11 13
18. Amed Sportif 11 13
19. Adanaspor 11 6
20. Yeni Malatyaspor 11 -3
Takımlar O P
1. Liverpool 10 25
2. M.City 10 23
3. Nottingham Forest 10 19
4. Chelsea 10 18
5. Arsenal 10 18
6. Aston Villa 10 18
7. Tottenham 10 16
8. Brighton 10 16
9. Fulham 10 15
10. Bournemouth 10 15
11. Newcastle 10 15
12. Brentford 10 13
13. M. United 10 12
14. West Ham United 10 11
15. Leicester City 10 10
16. Everton 10 9
17. Crystal Palace 10 7
18. Ipswich Town 10 5
19. Southampton 10 4
20. Wolves 10 3
Takımlar O P
1. Barcelona 12 33
2. Real Madrid 11 24
3. Atletico Madrid 12 23
4. Villarreal 11 21
5. Osasuna 12 21
6. Athletic Bilbao 12 19
7. Real Betis 12 19
8. Mallorca 12 18
9. Rayo Vallecano 11 16
10. Celta Vigo 12 16
11. Real Sociedad 12 15
12. Girona 12 15
13. Sevilla 12 15
14. Deportivo Alaves 12 13
15. Leganes 12 11
16. Getafe 12 10
17. Espanyol 12 10
18. Las Palmas 12 9
19. Real Valladolid 12 8
20. Valencia 11 7