09.04.2019, 11:28

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık - 9

Yapılan test, önerilen karma tam sayılı doğrusal programlama (MILP) uygulamasının küresel bir optimum hesaplamaya elverişli olduğunu göstermektedir. Ayrıca yine aynı uygulamanın, gerçekte küçük boyutlu bir şehrin mevcut bir sistemin kalitesinin geliştirilmesine yeterli olduğu görülmektedir. Bir referans olarak, mevcut sisteme nazaran ilgili referans çalışmalarında önerilen çözüm yönteminin geliştirilmesinin farklı test durumlarında %1,2’den %5,0’e değiştiği de vurgulanmalıdır. Son olarak önerilen sezgisel ötesi yaklaşımın aynı zamanda oldukça kısa bir zaman periyodunda iyi çözümler ürettiği de not edilmelidir.

Bu kapsamda hem Rivera’nın mevcut durumu için yaklaşık yöntemler ve hem de kesin yöntemlerin çözümlerinin tayinine çalışılmıştır. Tablo 2 mevcut sistemde her bir hattın θ sıklıklarında kesin ve yaklaşık çözümleri göstermektedir. Kesin yöntem ile 13 hattın 6’sının sıklıklarında değişim gözlemlenir iken yaklaşık yöntemde ise aynı hatların 9’unda değişim gözlemlenmektedir. İlki 3 hattın sıklığını arttırıp 3 hattınkini azaltırken, ikincisi ise 4 hattın sıklığını arttırırken 5 hattınkine ise azaltmaktadır. Eğer sadece önerilen metodolojinin ortaya koyduğu sıklıklara bakılırsa, 13 hattın 5’inde farklı sonuçlar gözlemlenir iken buna karşın bu farklılıklar değer olarak 1’den büyük değildir (sıklıklar θ’ya yakınsamakta olup ayrıca birbirlerine oldukça yakın değerler almaktadırlar).

Söz konusu modeller ve algoritmaların tarafından ortaya konan sıklıklar maksimum bekleme süresi de herhangi bir kısıtı dikkate almadığı not edilmelidir. Bu nedenle, önerilen çözümlerin sistem kullanıcıları ile ilgili uygun kaynakların (otobüs filosu büyüklüğü) yeniden dağılımını ifade etmesinden dolayı, birkaç belirli O-D çifti son iki hatta bağlı durumdan dolayı dezavantajlı sonuçlar verebilmektedir.

Önerilen formülasyon ve çözüm yönteminin uygulamalarının davranış ve olasılıkları ile ilgili olarak daha sayısallaştırılabilir unsurlar elde etmek için, aşağıdaki üç test icra edilmektedir: kullanıcıların aktarma yaptığı kabulü, θ olası sıklıklar dizisinin hassasiyet analizi ve başlangıç çözümü hassasiyeti.

Rivera şehrinde toplu ulaştırma sistemi kullanıcıları nadiren farklı hatlar arasında aktarma yapmaktadır. Bu durum kullanıcıların kullandıkları her hat başına ücret ödeme zorunluluğu gerçeğinden kaynaklanan bir durumdur. Ayrıca her bir hat rotası ve talep unsuru, dairesel bir yapıda olup şehir merkezi hemen hemen bütün hatların başlangıç noktasında yoğunlaşmaktadır. Ayrıca talep, örneğin herhangi bir aktarmaya ihtiyaç bırakmayacak bir şekilde hemen hemen doğrudan bir şekilde hizmetlendirilmektedir. Bu gözleme göre, aktarma olasılıklarını devre dışı bırakan, G grafiğinin modifiye bir kodlaması uygulanmaktadır. Bu alternatif kodlama, modeli daha önceki modellere kıyasla daha kolay çözülebilir bir hale getirmektedir.

Tablo 3, Rivera şehrinin durumuna uygulanan yukarıda açıklanan model dâhilinde Tablo 2’deki ile örtüşen sonuçlar vermektedir. Testte modelin daha kısa bir sürede optimal bir şekilde çözümlenebildiği gözlemlenmektedir. Ayrıca sezgisel ötesi yaklaşım, küresel optimuma oldukça yakınsaya bir amaç değerini ortaya koyan bir çözüm gerçekleştirmektedir. Bu testin sonuçlarının elde edilmesinde kullanılan G grafiği için alternatif bir kodlamanın, hesabın içerisine aktarma olasılıkları dâhil olduğunda kesin karma tam sayılı doğrusal programlama (MILP) formülasyonunun uygulanmasında verimli olmamaktadır. Bu sonuçlar kesin hipotezler altında (bu kapsamda belirtilen şartlarda doğrulanan) ortaya çıkmakta iken, model gerçek küçük boyutlu duruma uygulandığında optimalite dâhilinde çözülebilmektedir.

Karma tam sayılı doğrusal programlama (MILP) formülasyonu sıklık aralıkları ayrıklığına dayalı olduğundan dolayı, sonuçların modele dâhil edilen girdi paralelinde verili θ dizisinin örneklerine hassasiyet göstermesi beklenmektedir. Dahası θ’nın boyutu büyük ölçüde grafiğin boyutunu ve dahası uygulama süresini etkileyen karma tam sayılı doğrusal programlama (MILP) modeli sonuçlarının boyutunu da etkilemektedir.

Bu testte, daha önce açıklanan aktarmalar olmaksızın (Tablo 3’teki küresel optimal değerleri bir referans olarak alabilmek için) bir model kullanılarak Rivera şehri durumu için olası değişen sıklıklar dizisinden elde edilen sonuçlar karşılaştırılmaktadır.
O O I (%) I (%) T T
536,14 537,69 3,51 3,23 90 5
Tablo 3. Aktarmasız Model

Tablo 4 ise hem kesin ve hem de yaklaşık yaklaşımlar için O amaç değerlerini ve onlara karşılık gelen T uygulama sürelerini göstermektedir. Sonuçlara karşılık gelen ilk hat daha önce ifade edilmiş olup mevcut sistemin sıklıklarını kullanmaktadır. İkinci hat ise bir önceki diziye nazaran daha yüksek sıklıkları (1/10, 1/5) dâhil etmiştir. Amaç değerlerinin aynı olduğu gözlemlenebilmektedir. θ'ya eklenen hiçbir yeni sıklık değerinin optimal çözümde kullanılmadığı gözlemlenmektedir. Bu sıklıklar nispeten daha yüksek olduğundan dolayı, herhangi birisinin herhangi bir hatta atanması kimi diğer hatların sıklıklarında düşüşler kaydedilebilecektir. Sonuçlar aynı zamanda Rivera’daki hatlarda kullanılan maksimum sıklıkların (1/20 dakika) uygun otobüs filoları altında mantıklı olduğu önermektedir. Üçüncü hatta nispeten daha yüksek sıklık sayısı ile oluşturulan θ dizisi, 5 dakikalık aralıklarla (1/60, 1/5) aralığında değişmektedir. Bu durumda model dikkate değer ölçüde bir gelişim göstermekte ve 48 saatlik uygulamanın ardından (%2,3’lük nispi karma tamsayılı programlama aralığı ile) elde edilen amaç değeri tablodaki birinci ve ikinci hatlardakinden çok az küçük (<%1) olarak gerçekleşmektedir.
θ O O T T
(1/60, 1/40, 1/30, 1/20) 536,14 537,69 90 5
(1/60, 1/40, 1/30, 1/20, 1/10, 1/5) 536,14 537,69 210 5
(1/60, 1/55, ….., 1/5) 531,88 535,08 - 5
Tablo 4. Olası Sıklıklar Dizisi Hassasiyeti

Bu test, θ (benzer değerler dizini için) sıklıklar dizisinde değişim olurken, amaç değerlerinde kayda değer değişimler kaydedilmediğini, kesin değerin uygulama süresinin θ boyutuna karşı oransal olarak artış gösterdiğini ortaya koymaktadır. Bu testte yaklaşık değerin uygulama süresi, θ’nın değişimlerine karşı hassas değildir. Modelin pratik uygulaması ile ilgili olarak, θ’nın boyutunun rastgele bir şekilde yüksek bir değere çıkmayacağı kabul edilebilir.  
Yorumlar (0)
banner117
5
kısa süreli hafif yoğunluklu yağmur
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 28 71
2. Fenerbahçe 27 65
3. Samsunspor 29 52
4. Beşiktaş 27 47
5. Eyüpspor 28 44
6. Başakşehir 28 42
7. Göztepe 27 38
8. Gaziantep FK 27 38
9. Kasımpaşa 28 38
10. Antalyaspor 29 37
11. Trabzonspor 27 36
12. Konyaspor 29 34
13. Rizespor 28 34
14. Kayserispor 28 33
15. Sivasspor 29 31
16. Alanyaspor 28 31
17. Bodrum FK 28 30
18. Hatayspor 27 19
19. A.Demirspor 28 -2
Takımlar O P
1. Kocaelispor 31 62
2. Karagümrük 32 57
3. Erzurumspor 32 55
4. İstanbulspor 32 52
5. Gençlerbirliği 31 51
6. Bandırmaspor 31 51
7. Esenler Erokspor 32 47
8. Amed Sportif 32 47
9. Ahlatçı Çorum FK 32 46
10. Keçiörengücü 32 45
11. Ümraniye 31 45
12. Boluspor 32 45
13. Iğdır FK 32 45
14. Sakaryaspor 32 42
15. Pendikspor 31 41
16. Ankaragücü 31 38
17. Şanlıurfaspor 32 37
18. Manisa FK 32 37
19. Adanaspor 32 27
20. Yeni Malatyaspor 32 -21
Takımlar O P
1. Liverpool 30 73
2. Arsenal 31 62
3. Nottingham Forest 31 57
4. Chelsea 30 52
5. M.City 30 51
6. Aston Villa 31 51
7. Newcastle 29 50
8. Brighton 31 47
9. Bournemouth 31 45
10. Fulham 30 45
11. Crystal Palace 30 43
12. Brentford 30 41
13. M. United 30 37
14. Everton 31 35
15. West Ham United 31 35
16. Tottenham 30 34
17. Wolves 31 32
18. Ipswich Town 31 20
19. Leicester City 30 17
20. Southampton 30 10
Takımlar O P
1. Barcelona 29 66
2. Real Madrid 30 63
3. Atletico Madrid 29 57
4. Athletic Bilbao 29 53
5. Villarreal 28 47
6. Real Betis 29 47
7. Celta Vigo 30 41
8. Mallorca 30 41
9. Rayo Vallecano 30 40
10. Real Sociedad 29 38
11. Getafe 29 36
12. Sevilla 29 36
13. Girona 30 34
14. Osasuna 29 34
15. Valencia 30 34
16. Espanyol 29 32
17. Deportivo Alaves 30 30
18. Leganes 29 27
19. Las Palmas 29 26
20. Real Valladolid 29 16