22.04.2019, 11:03

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık - 10

Dahası uygulama süresinin sabit kalacağı da kabul edilebilir. Sezgisel ötesi yaklaşımın mevcut versiyonu, başlangıç çözümleri dizisinde basit bir yol kullanmaktadır: aynı sıklık değerini bütün hatlara tayin etmektedir. Bununla beraber belirli bir sıklık algoritmanın parametresini teşkil etmekte ve sonucu ifade eden çeşitli ön testler sıklığa karşı hassasiyet göstermektedir. Bu gözlemin hesaba katılması ile Mandl şehri için algoritma çalıştırılmış, bütün hatlar θ dizisinin dördüncü sıklığı (8 değere sahip olan) ile başlatılmış olup ardından altıncı sıklığa geçilmiştir. İlk testte temel mantık, araştırmada hatayı engellemek için bütün hatlara θ’nın ortanca değerini tayin etmektir. Amaç değeri 187,40 olarak elde edilmiş olup ikinci testteki değer ise 140,99’dur. Optimal çözümün gözlemlenmesinde θ’nın ilk 4 sıklığından hiçbirisinin kullanılmadığı not edilmelidir. Dahası gerçekte ikinci test optimal çözümün bir parçası olarak sıklık aralıklarının ortasında yer alan sıklık dizisi ile başlatılmıştır. Bu durum; nispeten farklı sonuçlara neden olan farklı başlangıç çözümleri ve başlangıç sıklığının oluşturulmasında kullanılabilecek optimum çözümlerle ilgili bilgi temini anlamına gelmektedir. Bu noktada örneğin hatların başlangıç sıklığının kurulumu için kesin modelin (çözümü kolay olan) doğrusal esnekliğinin optimal çözümünden temin edilen bilgi kullanılabilir. Bu da hem kesin ve hem de yaklaşık çözümler arasında ihtimal dâhilindeki bir terkibi ifade etmektedir.
 
Bu kapsamda Montevideo şehrindeki duruma uygulanan sezgisel ötesi yaklaşımın sonuçları analiz ve rapor edilmiştir. Optimal çözümün ve mevcut sistemin sıklığı hakkında bilgi bulunmamaktadır. Ayrıca testin ana amacı bir başlangıç (gerçek) çözümü geliştirmek için algoritma yeterliliğinin ve bu gibi bir gelişime ulaşmak için gerekli uygulama süresinin gözlemlenmesidir. Başlangıç çözümü bütün hatlarda aynı sıklığa göre kurulmuş ve filo boyutuna karşılık gelen değer en yüksek sınırına (1500 otobüs) mümkün olduğunca yaklaştırılmıştır. Bu yolla bütün hatlara Montevideo şehir durumu θ dizisinin 4 numaralı sıklığı olarak 1/12 atanmış ve buna karşılık gelen filo boyutu 1524 olarak alınmış olup bu boyut nispeten fizibıl olmayan bir çözüm türetmektedir. 

Algoritma tekil olarak çalıştırılmış, iterasyon sayısı 500 olarak sabitlenmiş, her on iterasyonda yaklaşık 90 dakikalık işlem süresi gözlemlenmiştir. Başlangıç çözümüne göre gelişim oranı %1,7 olup geliştirilmiş çözümün birçok hattının sıklığı değişmiştir. Ayrıca ezgisel ötesi yaklaşım ile başlangıç çözümü geliştirilebilir iken gelişim kısmi araştırma iterasyon sayısındaki artışa nazaran daha yüksek olarak gerçekleşmektedir. Şekil 4 algoritmanın iterasyon sayısına göre gelişimini göstermektedir. Şekil 4’de hem modelin amaç değerleri (amaç fonksiyonu tarafından ortaya konan) ve hem de sezgisel ötesi yaklaşımın bir kısmi gelişim ile tamamlanan çeşitli döngülere sahip olduğu gözlemlenmektedir. Dolayısı ile Şekil 4’de kısıtlar tarafından empoze edilen maksimum değer çevresinde salınım gösteren bir filo boyutu gözlemlenmekte olup fizibıl alanın yanı sıra bir algoritma araştırmasına imkân veren bir mekanizma tasarımı ile sonuçlanmaktadır. 

Sonuç olarak Montevideo için elde edilen gelişim oranı Rivera için elde edilen gelişim oranından daha düşük çıktığı not edilmelidir. Her hâlükârda gelişim yüzdesi, referans çalışmalarından elde edilenler ile halen aynı aralıkta olup %1,2-%5,0’dir. Uygulama süresi ile ilgili olarak algoritma, metodoloji amacının (stratejik ve taktik planlama düzeylerinde) yanı sıra durumun detaylı derece ve boyutunu hesaba katan kabul edilebilir bir performansa sahiptir. 

Sıklık optimizasyon problemi ile ilgili olarak yeni bir formülasyon ve yeni bir çözüm yöntemi önerilmiştir. Referans çalışmasında önerilmiş olan modele dayalı olarak, bu tarz çalışmalarda önerilen aynı düzeyli doğrusal olmayan yaklaşımlara denk olan bir karma tam sayılı doğrusal programlama (MILP) formülasyonu türetilmiştir. Formülasyonun yapısı karma tam sayılı doğrusal programlama (MILP) tekniklerini kullanarak probleme kesin çözüm getirmeye elverişlidir. 

Önerilen model vasıtası ile gerçek zamanlı küçük boyutlu şehirler ile ilgili durumlar için, optimal ya da optimale yakın çözümler (hassasiyet hesaplamaları ile) geliştirilebilir. Dikkate alınan toplu ulaştırma sistemi 13 hattan oluşmasına karşın, modelin uygulanması ile %3 civarında bir gelişim kaydedilmiştir. Bu nokta, küçük durumlarda bile sistemin verimliliğin arttırılması için açık bir kapı olduğunu göstermektedir. Plancının deneyimlerinden kaynaklı manuel çözümlere karşın, bu çözümler gerektiği ölçüde optimal değildir ayrıca optimizasyon modeli değişimler önerebilir, zira kesin ya da sezgisel değildirler. Ayrıca kaydedilen gelişim yüzdelerinin literatürdeki raporlanan örnekleri ile benzer olduğu da vurgulanmalıdır. 
Yorumlar (0)
banner117
15
açık
banner159
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 10 28
2. Samsunspor 11 25
3. Fenerbahçe 10 23
4. Beşiktaş 10 20
5. Eyüpspor 11 19
6. Sivasspor 11 17
7. Göztepe 10 15
8. Başakşehir 10 15
9. Kasımpasa 11 14
10. Konyaspor 11 14
11. Trabzonspor 10 12
12. Gaziantep FK 10 12
13. Bodrumspor 11 11
14. Antalyaspor 11 11
15. Alanyaspor 11 10
16. Rizespor 10 10
17. Kayserispor 10 9
18. Hatayspor 10 3
19. A.Demirspor 10 2
Takımlar O P
1. Erzurumspor 11 22
2. Kocaelispor 11 22
3. Bandırmaspor 11 21
4. Karagümrük 11 18
5. Igdir FK 11 18
6. Boluspor 11 18
7. Esenler Erokspor 11 17
8. Ümraniye 11 17
9. Pendikspor 11 17
10. Ankaragücü 11 16
11. Ahlatçı Çorum FK 11 16
12. Şanlıurfaspor 11 15
13. Gençlerbirliği 11 15
14. Manisa FK 11 14
15. Keçiörengücü 11 14
16. İstanbulspor 11 13
17. Sakaryaspor 11 13
18. Amed Sportif 11 13
19. Adanaspor 11 6
20. Yeni Malatyaspor 11 -3
Takımlar O P
1. Liverpool 10 25
2. M.City 10 23
3. Nottingham Forest 10 19
4. Chelsea 10 18
5. Arsenal 10 18
6. Aston Villa 10 18
7. Tottenham 10 16
8. Brighton 10 16
9. Fulham 10 15
10. Bournemouth 10 15
11. Newcastle 10 15
12. Brentford 10 13
13. M. United 10 12
14. West Ham United 10 11
15. Leicester City 10 10
16. Everton 10 9
17. Crystal Palace 10 7
18. Ipswich Town 10 5
19. Southampton 10 4
20. Wolves 10 3
Takımlar O P
1. Barcelona 12 33
2. Real Madrid 11 24
3. Atletico Madrid 12 23
4. Villarreal 11 21
5. Osasuna 12 21
6. Athletic Bilbao 12 19
7. Real Betis 12 19
8. Mallorca 12 18
9. Rayo Vallecano 11 16
10. Celta Vigo 12 16
11. Real Sociedad 12 15
12. Girona 12 15
13. Sevilla 12 15
14. Deportivo Alaves 12 13
15. Leganes 12 11
16. Getafe 12 10
17. Espanyol 12 10
18. Las Palmas 12 9
19. Real Valladolid 12 8
20. Valencia 11 7