11.03.2019, 15:53

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık-6

Kullanıcı davranışının gösteriminde, bir atama alt modeli dikkate alınmaktadır. Bu model kullanıcının bir dizi toplu ulaştırma hattını kullanarak, bir kalkış noktasında bir varış noktasına kendilerini taşıma yolunu ifade etmektedir. Bu durum sistem performansının; kullanıcının karşı karşıya kaldığı otobüs işgal oranı ve bekleme süresi adı ile hesaplanması için gereklidir. Kullanıcıların sıklıklara bağlı kararlarının, bütün bir optimizasyon modelinin karar değişkenleri olduklarından dolayı, atama alt modeli ile fazlasıyla bağlantılı bir unsur olduğunu da not etmekte gerekmektedir. 

Referans çalışmasından daha önceki yıllardaki bu tarz çalışmalarda önerilmiş olan ve optimal stratejiler olarak adlandırılan atama modelleri de dikkate alınmaktadır. Uygulama esnasında bir strateji kurallar dizisi olarak tanımlanmakta olup söz konusu strateji kullanıcının varış noktasına erişebilmesi ile ilgilidir. G olarak adlandırılan grafiğe göre ve verili bir O-D çifti olan k için, A olarak adlandırılan bir yay alt kümesi gibi bir strateji söz konusu olup OK’den DK’ye seyahatler için, kullanıcıların öncelik olarak belirlediği bütün hatları ifade etmektedir. Model, verili bir kullanıcının kendi toplam seyahat süresini minimize eden bir stratejiyi tercih ettiği kabulünü yapmaktadır. Bunu yapmak için söz konusu kullanıcı kalkış ve varış otobüs istasyonlarını (hatta aktarmalar da dâhil) birbirine bağlayan bütün ihtimal dâhilindeki hatlar arasında daha cazibeli olan öncelikli (seyahatin kalkış noktasından daha erken hareket eden hat gibi) hatlar dizisini seçecektir. Bu süreçte yolcu sistemin bütün hatlarındaki seyir seyahat süresine bağlı bilgiyi hesaba katmakta, aynı zamanda bütün hatların sıklığını bilmekte (G grafiğindeki seyahat yaylarının maliyetlerinin verilmesiyle) bekleme süresini hesaplamaya ihtiyaç duymaktadır. Otobüs istasyonunda beklerken kullanıcı, öncelik olarak belirlediği cazibeli hatlardan dizisine ait olan hatlardan birisinden gelen ilk otobüse binecektir. Bir strateji eğer toplam öngörülen seyahat süresini minimize ediyorsa, optimaldir. 

Bir atama modelinin asli kabulü, bekleme süresi hesap kabulleri ve kullanıcının hat seçimleridir. Literatürdeki genel kabulü ile bir hat dizisi için bir istasyondaki yolcu bekleme süresi R = (r1,………..,rm) olup buna karşılık gelen sıklıklar F = (f1,…………,fm) iken ortalama bir değere göre rastgele değişken ile modellenebilir. Burada β hizmet düzenliliği ile ilgili kabullere bağlı parametredir. Dahası yolcuların istasyona ulaşan ilk otobüse bineceği (R serisinin güzergâhlarında çalışan otobüsler arasında) ve sıklık dağılım kuralı olarak bilinen güzergâh kullanımı olasılığı kabulleri yapılmaktadır.

Vn (n düğüm noktasındaki akım) ve Xa (optimal stratejiye ait a yayı olup bir çift değişkeni ifade etmektedir) değişkenlerinin gösterimi üzerine atama problemi, bekleme süresi çözümlemesi ve sıklık dağılım kuralı içeren amaç fonksiyonunda seyahat süresinin minimizasyonunu formüle edebilmektedir, Va a yayında sefere karşılık gelen hattın sıklığı (otobüs/zaman birimi) olan n düğüm noktası ve fa’dan üretilen yaylar olan a yayı boyunca talep akışının miktarını göstermektedir. Bu optimizasyon problemi doğrusal (lineer) olmayan çözümlemeler ve ikili değişkenler içermekte, bunların bütünlüklü detaylarına ilgili çalışmalarda ulaşılabilmektedir. Bu tarz çalışmalar bağlamında, değişkenlerdeki bir değişimin ortalaması ve sonuç modelinin fizibıl yerleşiminin hesaba katılması ile ilgilenilmekte, model bu temelde basitleştirilmeye çalışılmaktadır. 

İlgili hesaplamalardan kullanıcıların sefer seyahat süresi ve bekleme süresi toplamını minimize edecek şekilde davranmayı amaçladıkları anlaşılmaktadır. Bu noktadaki kısıt akım korunumu olup bütün talebin varış noktasına ulaşabilmesi gerektiği anlamına gelmektedir. Eğer a yayı optimal stratejinin bir parçası değil ise Va sıfır olmakta, optimal çözümleme dahilindeki yaylar için, kısıt sıklık dağılımı kuralı çözümlemesinin yeniden yapılandırılması ve denklik kuralına göre teyit edilmektedir. 

Bu formülasyon doğrusaldır (lineer) ve en kısa yol problemine çok benzemektedir. Farklılık, amaç fonksiyonunun düğüm noktalarını ifade eden bir terim içermesi ile verili bir istasyon ve varış noktasından geçen cazibe hatları arasındaki talebin dağılımını gösteren bir kısıtı içermesidir. Bu kısıttan dolayı atamam probleminin çözümü grafikte tekil bir yol olmayıp, kalkıştan varışa farklı rotaları içeren bir hiper yoldur. 

Sıklık optimizasyonu için söz konusu model 1995 yılında yapılan çalışmalara dayanmakta olup doğrusal olmayan ve aynı düzeyli bir formülasyon yapısına sahiptir. Önerideki anahtar farklılık ise, tekil düzeyli bir yapıya sahip olan belirli koşullar altındaki doğrusal formülasyonun edinilmesini sağlayan belirtilen grafiğin yardımcı yapısına giriş yapmasıdır. 

Bu kapsamda herhangi bir hattın sıklığı için olası değeri temsilen, negatif değer almayan her bir θi için verili θ = (θ1,……..…….,θm) dizisinin ortalamasınca sıklık aralıklarının ayrık tanımı yapılmaktadır. Sıklıkların fizibıl bir dizisi her bir hat için bir θ değeri oluşturmaktadır. Ayrıca G grafiği için yeni bir yapı tanımlanmış olup bu yapıda her bir θ değeri için bir sefer yayına sahip olan verili bir istasyonca her bir hattan geçilmektedir. Şekil 2’de bu gibi bir yapı Şekil 1’deki örneğin üzerinden ortaya konmakta ve 3 ayrı sıklığa sahip bir θ örneği üzerinden gidilmektedir. Sıklık aralıklarının ayrıklaştırılması yolu ile bir hassasiyet kaybı oluştuğu da not edilmelidir. Diğer taraftan gerçek sistemlerde hizmet koordinasyonu ve filo yönetimi konularına bağlı olarak indirgenmiş bir sıklık değerleri dizisinin hesaba katılması için söz konusu durum uygundur. Literatürde bu noktada değerlendirmeler devam etmektedir. 
 
Şekil 2. Ayrışık Sıklık Alanlarını İfade Eden Grafik Model

Ardından eğer l hattında θf sıklığı ortaya çıkıyorsa, ylf ikili değişkeni uygulanmaktadır. Bu tanımlamalar ve belirlenen atama alt modeline dayalı olarak, B’nin filo boyutundaki üst limit, f(a)’nın söz konusu yaya karşılık gelen hattı gösteren l(a) ve a yayınca ifade edilen θ sıklığındaki endeksi gösterdiği durumda sıklık optimizasyon modeli formüle edilmektedir. OD çiftinin ikamesi olarak k endeksinin eklendiği de not edilmelidir. 
Yorumlar (0)
banner117
5
kısa süreli hafif yoğunluklu yağmur
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 27 71
2. Fenerbahçe 26 62
3. Samsunspor 27 51
4. Beşiktaş 26 44
5. Eyüpspor 27 44
6. Gaziantep FK 26 38
7. Göztepe 26 37
8. Başakşehir 26 36
9. Trabzonspor 26 35
10. Kasımpaşa 27 35
11. Rizespor 27 33
12. Antalyaspor 27 33
13. Konyaspor 27 31
14. Alanyaspor 27 31
15. Bodrum FK 27 30
16. Sivasspor 27 27
17. Kayserispor 26 27
18. Hatayspor 26 19
19. A.Demirspor 26 -2
Takımlar O P
1. Kocaelispor 30 59
2. Karagümrük 30 53
3. Erzurumspor 30 51
4. Bandırmaspor 30 50
5. Gençlerbirliği 30 48
6. İstanbulspor 30 46
7. Ahlatçı Çorum FK 30 45
8. Boluspor 30 44
9. Ümraniye 30 44
10. Amed Sportif 30 43
11. Iğdır FK 30 43
12. Keçiörengücü 30 42
13. Esenler Erokspor 30 41
14. Pendikspor 30 40
15. Sakaryaspor 30 39
16. Ankaragücü 30 38
17. Manisa FK 30 37
18. Şanlıurfaspor 30 34
19. Adanaspor 30 27
20. Yeni Malatyaspor 30 -21
Takımlar O P
1. Liverpool 29 70
2. Arsenal 29 58
3. Nottingham Forest 29 54
4. Chelsea 29 49
5. M.City 29 48
6. Newcastle 28 47
7. Brighton 29 47
8. Fulham 29 45
9. Aston Villa 29 45
10. Bournemouth 29 44
11. Brentford 29 41
12. Crystal Palace 28 39
13. M. United 29 37
14. Tottenham 29 34
15. Everton 29 34
16. West Ham United 29 34
17. Wolves 29 26
18. Ipswich Town 29 17
19. Leicester City 29 17
20. Southampton 29 9
Takımlar O P
1. Barcelona 27 60
2. Real Madrid 28 60
3. Atletico Madrid 28 56
4. Athletic Bilbao 28 52
5. Villarreal 27 44
6. Real Betis 28 44
7. Mallorca 28 40
8. Celta Vigo 28 39
9. Rayo Vallecano 28 37
10. Sevilla 28 36
11. Getafe 28 36
12. Real Sociedad 28 35
13. Girona 28 34
14. Osasuna 27 33
15. Espanyol 27 28
16. Valencia 28 28
17. Deportivo Alaves 28 27
18. Leganes 28 27
19. Las Palmas 28 25
20. Real Valladolid 28 16