11.03.2019, 15:53

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık-6

Kullanıcı davranışının gösteriminde, bir atama alt modeli dikkate alınmaktadır. Bu model kullanıcının bir dizi toplu ulaştırma hattını kullanarak, bir kalkış noktasında bir varış noktasına kendilerini taşıma yolunu ifade etmektedir. Bu durum sistem performansının; kullanıcının karşı karşıya kaldığı otobüs işgal oranı ve bekleme süresi adı ile hesaplanması için gereklidir. Kullanıcıların sıklıklara bağlı kararlarının, bütün bir optimizasyon modelinin karar değişkenleri olduklarından dolayı, atama alt modeli ile fazlasıyla bağlantılı bir unsur olduğunu da not etmekte gerekmektedir. 

Referans çalışmasından daha önceki yıllardaki bu tarz çalışmalarda önerilmiş olan ve optimal stratejiler olarak adlandırılan atama modelleri de dikkate alınmaktadır. Uygulama esnasında bir strateji kurallar dizisi olarak tanımlanmakta olup söz konusu strateji kullanıcının varış noktasına erişebilmesi ile ilgilidir. G olarak adlandırılan grafiğe göre ve verili bir O-D çifti olan k için, A olarak adlandırılan bir yay alt kümesi gibi bir strateji söz konusu olup OK’den DK’ye seyahatler için, kullanıcıların öncelik olarak belirlediği bütün hatları ifade etmektedir. Model, verili bir kullanıcının kendi toplam seyahat süresini minimize eden bir stratejiyi tercih ettiği kabulünü yapmaktadır. Bunu yapmak için söz konusu kullanıcı kalkış ve varış otobüs istasyonlarını (hatta aktarmalar da dâhil) birbirine bağlayan bütün ihtimal dâhilindeki hatlar arasında daha cazibeli olan öncelikli (seyahatin kalkış noktasından daha erken hareket eden hat gibi) hatlar dizisini seçecektir. Bu süreçte yolcu sistemin bütün hatlarındaki seyir seyahat süresine bağlı bilgiyi hesaba katmakta, aynı zamanda bütün hatların sıklığını bilmekte (G grafiğindeki seyahat yaylarının maliyetlerinin verilmesiyle) bekleme süresini hesaplamaya ihtiyaç duymaktadır. Otobüs istasyonunda beklerken kullanıcı, öncelik olarak belirlediği cazibeli hatlardan dizisine ait olan hatlardan birisinden gelen ilk otobüse binecektir. Bir strateji eğer toplam öngörülen seyahat süresini minimize ediyorsa, optimaldir. 

Bir atama modelinin asli kabulü, bekleme süresi hesap kabulleri ve kullanıcının hat seçimleridir. Literatürdeki genel kabulü ile bir hat dizisi için bir istasyondaki yolcu bekleme süresi R = (r1,………..,rm) olup buna karşılık gelen sıklıklar F = (f1,…………,fm) iken ortalama bir değere göre rastgele değişken ile modellenebilir. Burada β hizmet düzenliliği ile ilgili kabullere bağlı parametredir. Dahası yolcuların istasyona ulaşan ilk otobüse bineceği (R serisinin güzergâhlarında çalışan otobüsler arasında) ve sıklık dağılım kuralı olarak bilinen güzergâh kullanımı olasılığı kabulleri yapılmaktadır.

Vn (n düğüm noktasındaki akım) ve Xa (optimal stratejiye ait a yayı olup bir çift değişkeni ifade etmektedir) değişkenlerinin gösterimi üzerine atama problemi, bekleme süresi çözümlemesi ve sıklık dağılım kuralı içeren amaç fonksiyonunda seyahat süresinin minimizasyonunu formüle edebilmektedir, Va a yayında sefere karşılık gelen hattın sıklığı (otobüs/zaman birimi) olan n düğüm noktası ve fa’dan üretilen yaylar olan a yayı boyunca talep akışının miktarını göstermektedir. Bu optimizasyon problemi doğrusal (lineer) olmayan çözümlemeler ve ikili değişkenler içermekte, bunların bütünlüklü detaylarına ilgili çalışmalarda ulaşılabilmektedir. Bu tarz çalışmalar bağlamında, değişkenlerdeki bir değişimin ortalaması ve sonuç modelinin fizibıl yerleşiminin hesaba katılması ile ilgilenilmekte, model bu temelde basitleştirilmeye çalışılmaktadır. 

İlgili hesaplamalardan kullanıcıların sefer seyahat süresi ve bekleme süresi toplamını minimize edecek şekilde davranmayı amaçladıkları anlaşılmaktadır. Bu noktadaki kısıt akım korunumu olup bütün talebin varış noktasına ulaşabilmesi gerektiği anlamına gelmektedir. Eğer a yayı optimal stratejinin bir parçası değil ise Va sıfır olmakta, optimal çözümleme dahilindeki yaylar için, kısıt sıklık dağılımı kuralı çözümlemesinin yeniden yapılandırılması ve denklik kuralına göre teyit edilmektedir. 

Bu formülasyon doğrusaldır (lineer) ve en kısa yol problemine çok benzemektedir. Farklılık, amaç fonksiyonunun düğüm noktalarını ifade eden bir terim içermesi ile verili bir istasyon ve varış noktasından geçen cazibe hatları arasındaki talebin dağılımını gösteren bir kısıtı içermesidir. Bu kısıttan dolayı atamam probleminin çözümü grafikte tekil bir yol olmayıp, kalkıştan varışa farklı rotaları içeren bir hiper yoldur. 

Sıklık optimizasyonu için söz konusu model 1995 yılında yapılan çalışmalara dayanmakta olup doğrusal olmayan ve aynı düzeyli bir formülasyon yapısına sahiptir. Önerideki anahtar farklılık ise, tekil düzeyli bir yapıya sahip olan belirli koşullar altındaki doğrusal formülasyonun edinilmesini sağlayan belirtilen grafiğin yardımcı yapısına giriş yapmasıdır. 

Bu kapsamda herhangi bir hattın sıklığı için olası değeri temsilen, negatif değer almayan her bir θi için verili θ = (θ1,……..…….,θm) dizisinin ortalamasınca sıklık aralıklarının ayrık tanımı yapılmaktadır. Sıklıkların fizibıl bir dizisi her bir hat için bir θ değeri oluşturmaktadır. Ayrıca G grafiği için yeni bir yapı tanımlanmış olup bu yapıda her bir θ değeri için bir sefer yayına sahip olan verili bir istasyonca her bir hattan geçilmektedir. Şekil 2’de bu gibi bir yapı Şekil 1’deki örneğin üzerinden ortaya konmakta ve 3 ayrı sıklığa sahip bir θ örneği üzerinden gidilmektedir. Sıklık aralıklarının ayrıklaştırılması yolu ile bir hassasiyet kaybı oluştuğu da not edilmelidir. Diğer taraftan gerçek sistemlerde hizmet koordinasyonu ve filo yönetimi konularına bağlı olarak indirgenmiş bir sıklık değerleri dizisinin hesaba katılması için söz konusu durum uygundur. Literatürde bu noktada değerlendirmeler devam etmektedir. 
 
Şekil 2. Ayrışık Sıklık Alanlarını İfade Eden Grafik Model

Ardından eğer l hattında θf sıklığı ortaya çıkıyorsa, ylf ikili değişkeni uygulanmaktadır. Bu tanımlamalar ve belirlenen atama alt modeline dayalı olarak, B’nin filo boyutundaki üst limit, f(a)’nın söz konusu yaya karşılık gelen hattı gösteren l(a) ve a yayınca ifade edilen θ sıklığındaki endeksi gösterdiği durumda sıklık optimizasyon modeli formüle edilmektedir. OD çiftinin ikamesi olarak k endeksinin eklendiği de not edilmelidir. 
Yorumlar (0)
banner117
15
açık
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 11 31
2. Fenerbahçe 11 26
3. Samsunspor 12 25
4. Eyüpspor 12 22
5. Beşiktaş 11 21
6. Göztepe 11 18
7. Sivasspor 12 17
8. Başakşehir 11 16
9. Kasımpasa 12 14
10. Konyaspor 12 14
11. Antalyaspor 12 14
12. Rizespor 11 13
13. Trabzonspor 11 12
14. Gaziantep FK 11 12
15. Kayserispor 11 12
16. Bodrumspor 12 11
17. Alanyaspor 11 10
18. Hatayspor 11 6
19. A.Demirspor 11 2
Takımlar O P
1. Kocaelispor 12 25
2. Bandırmaspor 12 24
3. Erzurumspor 12 22
4. Karagümrük 12 21
5. Igdir FK 12 21
6. Ankaragücü 12 19
7. Ahlatçı Çorum FK 12 19
8. Boluspor 12 18
9. Şanlıurfaspor 12 18
10. Manisa FK 12 17
11. Esenler Erokspor 12 17
12. Ümraniye 12 17
13. Pendikspor 12 17
14. Keçiörengücü 12 15
15. Gençlerbirliği 12 15
16. İstanbulspor 12 14
17. Amed Sportif 12 14
18. Sakaryaspor 12 13
19. Adanaspor 12 7
20. Yeni Malatyaspor 12 -3
Takımlar O P
1. Liverpool 11 28
2. M.City 11 23
3. Chelsea 11 19
4. Arsenal 11 19
5. Nottingham Forest 11 19
6. Brighton 11 19
7. Fulham 11 18
8. Newcastle 11 18
9. Aston Villa 11 18
10. Tottenham 11 16
11. Brentford 11 16
12. Bournemouth 11 15
13. M. United 11 15
14. West Ham United 11 12
15. Leicester City 11 10
16. Everton 11 10
17. Ipswich Town 11 8
18. Crystal Palace 11 7
19. Wolves 11 6
20. Southampton 11 4
Takımlar O P
1. Barcelona 13 33
2. Real Madrid 12 27
3. Atletico Madrid 13 26
4. Villarreal 12 24
5. Osasuna 13 21
6. Athletic Bilbao 13 20
7. Real Betis 13 20
8. Real Sociedad 13 18
9. Mallorca 13 18
10. Girona 13 18
11. Celta Vigo 13 17
12. Rayo Vallecano 12 16
13. Sevilla 13 15
14. Leganes 13 14
15. Deportivo Alaves 13 13
16. Las Palmas 13 12
17. Getafe 13 10
18. Espanyol 12 10
19. Real Valladolid 13 9
20. Valencia 11 7