18.05.2017, 16:56

Kentleşme Süreci ve Uluslararası Örneklerle Değerlendirilmesi- 4

Görüntüleme Prosesi

Bu tarz çalışmalar kapsamında ihtiyaç duyulan görüntü işlenmesi; görüntü toplanması, şerit seçimi ve kombinasyonunu içermektedir. Görüntü toplanması; çok şeritli uydu görüntülerinin çok şeritli bir görüntüye dönüştürülmesi prosesidir. Görüntü toplanırken, hem termal şerit ve hem de pankromatik şerit hariç tutulmuştur, çünkü onların bu tarz çalışmalar kapsamındaki bütün katkıları oldukça kısıtlıdır. Renk isimlendirme terkipleri 4, 3, 2 şeritleri için sırasıyla kırmızı, yeşil ve mavi olup bu tarz çalışmalar kapsamında farklı LU/LC türleri için farklılıkları belirginleştirmede kullanılmaktadır. Bu tarz çalışmalar kapsamında kentsel alanlar açık mavi, bitki örtüleri kırmızı gölgelendirmeli, su yapıları koyu maviden siyaha ve ekili olmayan (çıplak) toprak katmanları da beyazdan (kum, kil) kahverengiye lejantlandırılmıştır.

Bu tarz çalışmalar temelde kentsel yayılmaya ve bunun zirai alanlarla doğal alanlar üzerindeki etkilerine odaklanmaktadır. Dahası, tasnif sonuçları için 5 bilgi sınıfı belirlenmiş olup bunlar inşa alanları, zirai alanlar, su bölgeleri, ormanlar ve ağaçlıklar ile diğerleri olarak isimlendirilmiştir. Sınıflandırma detayları Tablo 2’de verilmiştir. Dijital tasnif; maksimum benzerlik görüntü tasnifleyicisi kullanılarak yapılmıştır. Maksimum benzerlik karar kuralı, olasılık temelli olarak sınıflandırmalara piksel atamasıdır.

Bu tasnifleyici, en genel tasnif algoritması olup bilgi tasniflerinin pratiğini de içerdiğinden aynı zamanda başarılıdır. Tasnifleyici; doğrudan kotla doğrulanarak elde edilen bilgi tasnifleri kullanmakta olup dolayısıyla, her bir uygulama sınıfına ait olan her bir pikselin benzerlik olasılığı temelinde bir sınıflandırma temin edilmektedir.

LU/LC Tasnifi
Tanımlamalar
      1. Kentsel arazi
Bütün suni özellikler (iskan, ticari ve sanayi alanları, yerleşimler, ulaştırma altyapısı ve karma kentleşme
       2. Zirai arazi
Tarlalar ve diğer zirai faaliyet türlerini kapsamaktadır
       3. Su bölgeleri
Göller, nehirler, akarsular ve kanallar gibi su yapıları
       4. Ormanlar ve ağaçlık alanlar
Yaprak döken ve yaprak dökmeyen ormanlar ve dönüşümsel ağaçlıklar
       5. Diğerleri
Karma piksel içerikliler: Zirai alanlarla yapılaşma alanlarının karması, kentsel alanlarla doğal alanların (ormanlar ve ağaçlıklar, doğal su yapıları, diğer arazi örtüsü türleri) karması
Tablo 2. LU/LC Tasnif Şeması

Pratik sahaları; Chicago Yeşil Alan Altyapısı-Arazi Kullanımı 2004, IKONOS ve Chicago’nun Illinois ilçesi arazi örtüsü haritaları gibi yardımcı veri ve referansların desteğiyle seçilmiştir. Her bir pratik sahası için eğitim poligonları dijitalleştirilmiş olup LU/LC kategorisi için spektral işaretlemeler, pikselleri kategorize eden istatistiklerin türetilmesi için geliştirilmiştir. Uygulama işaretlemelerinin ayrılabilirliklerinin değerlendirilmesi için çeşitli yöntemler kullanılmıştır. Tasnif değerlendirmesinde, sadece ayrılabilir işaretlemeli uygulama sahaları kullanılmıştır. Sınıf başına en az 30 uygulama sahası ve toplamda 360 uygulama sahası, denetlenen görüntü tasnifi ve sonrasındaki hassasiyet değerlemesi için seçilmiştir.
 
Düzeltilmiş görüntüler

Takip eden görüntü sınıflandırmasıyla, komşularından bağımsız olarak her bir piksel grubunun izole edilmiş etkileri tanımlanmıştır. Tasnif sonrası düzeltme; görüntünün son düzeltmesi ve bu gibi izole etkilerin saf dışı bırakılması için yürütülmektedir. Bu çalışma 3x3 boyutlu Majoroty filtresi ile yapılmakta olup söz konusu filtre, filtre penceresindeki en popüler değerlere göre izole piksellerin yerinin değiştirilmesinde kullanılmaktadır. Ardından düzeltilmiş görüntüler; çalışma alanının boyutlarına göre şekillendirilip ölçeklendirilmektedir.

Tasnif edilmiş haritaların hassasiyet değerlendirmesi, hata matrisleri kullanılarak yapılmaktadır. Hata matrisi; toplam hassasiyet, üretici hassasiyeti, kullanıcı hassasiyeti, Kappa endeksi gibi parametreleri kullanarak hassasiyet değerlendirmesi yapmaktadır. Toplam hassasiyet; toplam düzeltilerek tasnif edilmiş pikselleri belirlemekte ve düzeltilerek tasnif edilmiş piksellerin toplam sayısının, hata matrisindeki piksellerin toplam sayısına bölünmesiyle bulunmaktadır. Üretici hassasiyeti; düzeltilerek tasnif edilmiş bir pikselin referans alınma olasılığını belirtirken kullanıcı hassasiyeti ise güncel olarak arazi durumuna göre bir kategoriyi ifade eden bir harita üzerinde tasnif edilmiş bir pikselin olasılığını göstermektedir. Diğer taraftan Kappa endeksi ise tasnif haritası ile referans verilerinin örtüşme düzeyini ölçmektedir. Bütün hassasiyet verileri 0 ila 1 arasındaki endeks değerlerine sahip iken 0 zayıf, 1 ise güçlü hassasiyeti/örtüşmeyi sembolize etmektedir.

Değişim tespiti analizleri için uygun görüntülerin seçilmesinde, bir dizi uzaktan algılama sistem ve çevresel kabul yapılmıştır. Örneğin sistem kabulleri ile bağlantılı olarak, yıl dönümü tarihleri ya da yakın tarihlerde bilgi edinimi ile ilgili teşebbüslerde bulunulmuştur. Bu yüzden; yıldönümleri ya da yıldönümlerine yakın tarihlerde, örneğin 10/04/1989, 09/12/2010 gibi tarihli görüntüler elde edilmiştir. Buna ilave olarak; aynı yersel ve radyometrik çözünürlük ile görüntü seçimleri için girişimlerde bulunulmuştur. Diğer kabullere; atmosfer koşulları, toprak nemlilik koşulları ve görüntülerin kaydedildiği anların bitkisel fonolojik döngüleri de dahildir. Seçili görüntüler bulutsuz atmosfer koşullarında kaydedilmiş olup hava benzer nemlilik koşullarında ve zemin benzer bitkisel gelişim mevsimindedir.
 
Değişim algoritmaları

Birçok değişim tespiti algoritması söz konusudur. Tasnif sonrası değişim tespitleri ve örneğin, görüntü farklılaştırması, görüntü oranlaması, çok tarihli terkipli görüntü gibi cebir temelli görüntü değişim tespitleri bulunmaktadır. Görüntüye dayalı cebirsel bazlı değişim tespiti, özellikle de görüntü farklılaşması sadece değişen ya da değişmeyen bilgi sağlarken, tasnif sonrası teknikler uçtan uca değişim matrisleri temin etmektedir. Diğer taraftan tasnif sonrası teknik en genel değim tespit yöntemi olup kentsel yayılma ile kentsel alanda meydana gelen değişimlerin tespiti ve izlemesinde de başarı ile uygulanmaktadır. Dahası tasnif sonrası yöntem, 1989-1999, 1999-2010 ve 1989-2010 yılları arasında LU/LC değişimlerinin hesaplanması için IDRISI’de Arazi Değişimi Modelleyicisi’nin (LCM) değişim tablosunda kullanılmaktadır. Arazi değişim tablosu aynı zamanda değişim grafikleri ve haritalarında çeşitlilik oluşturmak için geliştirilmiş olup uçtan uca haritalarındaki değişim ile arazi örtüsü kazanım ve kayıplarının geçerliliğinin anlaşılmasında yardımcı olmaktadır. Kentsel yayılmanın mekansal-zamansal değişimleri aynı zamanda yapılaşan ve yapılaşmayan arazilerin yeniden tasnif haritalarında üç zaman periyodu için (1989, 1999, 2010) LU/LC haritalarının oluşturulmasıyla değerlendirilmiştir.

Kentsel gelişim ve arazi kullanımı

Kentsel gelişim ve arazi kullanımı değişiminin modellenmesi amacıyla farklı modeller geliştirilmiştir. Bunlar; Markov zinciri, Geomod, CA-Markov ve Arazi Değişimi Modelleyicisidir (LCM). Değişimi Modelleyicisi (LCM) aynı zamanda bazı durumlarda çok katmanlı algılayıcısı (MLP)-Markov olarak adlandırılmaktadır çünkü Markov ve çok katmanlı algılayıcısı (MLP) tekniklerinin bir terkibini ifade etmekte ve çalışma alanında kentsel gelişimin hesabı için seçilmektedir. Yöntem; yakın dönem çalışmalarında LU/LC değişimlerindeki karmaşık bağıntıların bir simülasyonu için en uygun olanı olarak görülmektedir. LU/LC haritasındaki geçmiş dönem değişimler bazlı olarak gelecek LU/LC değerlerini hesaplayan Arazi Değişimi Modelleyicisi (LCM) üç ana adımdan oluşmaktadır. Bunlar; değişim analizleri, dönüşüm potansiyeli modellemesi ve değişim hesaplamalarıdır.

Modelleme

Modelleme; 1989 ve 2010 olmak üzere iki farklı tarih için, proje parametreleri olarak iki LU/LC haritasını gerektirmektedir. LU/LC haritaları; çalışma alanındaki değişimin yapısının anlaşılması ve modellenmesi gereken dönüşüm örneklerinin tesisi için bir referans olarak kullanılmaktadır. Dönüşüm potansiyeli haritası; çok katmanlı algılayıcılı (MLP) sinir ağı algoritmasının bir ürünü olup lineer olmayan bağıntıların optimize edilebilirliği dolayısıyla seçilmiştir. Çok katmanlı algılayıcılı (MLP) çalışma istatistikleri Tablo 3’te gösterilmektedir. Uygulama değişkenlerinin bütün kombinasyonlarıher birisinin ilgili etkilerinin değerlendirilmesi için sınanmıştır. Çok katmanlı algılayıcılı (MLP) uygulamalı değişkenler ve yapılaşma alanlarından mesafeleri kullanmak suretiyle iyi bir hassasiyet oranı (örneğin yüzde 79,15) vermekte olup tekraren yüksek değerler, bağıntının karmaşıklığı ve kullanılan modelleme yaklaşımının matematiksel gereksinimlerini bütünüyle hesaba katamadığından, güçlü bir performansı garanti etmemekte, dahası birçok faktör, çok katmanlı algılayıcıda (MLP) yüksek doğruluk oranlarına ulaşmak için hariç tutulmuştur. 1989-2012 arasında dönüşüme uğrayan minimum hücre sayısı 361 bin 45 olup ayrıca bu sayı maksimum numune boyutunu da ifade etmektedir. İdealde RMS hata eğrisi pürüzsüz ve iniş eğimli olmalıdır. Bu tarz çalışmalarda RMS hata eğrisi, hem uygulamalı RMS ve hem de sınamalı RMS eğrileri, doğruluk oranında artış anlamına gelen, düşüş eğiliminde olmaktadır.
 
Maksimum Numune Boyutu
360.045
İterasyonlar
10.000
Uygulamalı RMS
0,2373
Sınamalı RMS
0,2386
Doğruluk Oranı (%)
%79,15
Tablo 3. Çok Katmanlı Algılayıcılı (MLP) Sinir Ağları İstatistikleri
Yorumlar (0)
banner117
5
kısa süreli hafif yoğunluklu yağmur
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 16 44
2. Fenerbahçe 16 36
3. Samsunspor 16 30
4. Göztepe 16 28
5. Eyüpspor 17 27
6. Beşiktaş 16 26
7. Başakşehir 16 23
8. Gaziantep FK 16 21
9. Antalyaspor 16 21
10. Kasımpasa 16 20
11. Konyaspor 16 20
12. Rizespor 16 20
13. Trabzonspor 16 19
14. Sivasspor 17 19
15. Alanyaspor 16 18
16. Kayserispor 16 15
17. Bodrumspor 16 14
18. Hatayspor 16 9
19. A.Demirspor 16 5
Takımlar O P
1. Kocaelispor 17 35
2. Bandırmaspor 17 33
3. Karagümrük 17 31
4. Erzurumspor 17 29
5. Keçiörengücü 17 27
6. Igdir FK 17 25
7. Amed Sportif 17 25
8. Ahlatçı Çorum FK 17 25
9. İstanbulspor 17 24
10. Ankaragücü 17 24
11. Manisa FK 17 23
12. Pendikspor 17 23
13. Gençlerbirliği 17 23
14. Esenler Erokspor 17 22
15. Boluspor 17 22
16. Ümraniye 17 22
17. Şanlıurfaspor 17 21
18. Sakaryaspor 17 21
19. Adanaspor 17 14
20. Yeni Malatyaspor 17 -3
Takımlar O P
1. Liverpool 18 45
2. Arsenal 19 39
3. Nottingham Forest 19 37
4. Chelsea 19 35
5. Newcastle 19 32
6. M.City 19 31
7. Bournemouth 19 30
8. Fulham 19 29
9. Aston Villa 19 29
10. Brighton 19 27
11. Tottenham 19 24
12. Brentford 19 24
13. West Ham United 19 23
14. M. United 19 22
15. Crystal Palace 19 20
16. Everton 18 17
17. Wolves 19 16
18. Ipswich Town 19 15
19. Leicester City 19 14
20. Southampton 19 6
Takımlar O P
1. Atletico Madrid 18 41
2. Real Madrid 18 40
3. Barcelona 19 38
4. Athletic Bilbao 19 36
5. Villarreal 18 30
6. Mallorca 19 30
7. Real Sociedad 18 25
8. Girona 18 25
9. Real Betis 18 25
10. Osasuna 18 25
11. Celta Vigo 18 24
12. Rayo Vallecano 18 22
13. Las Palmas 18 22
14. Sevilla 18 22
15. Leganes 18 18
16. Deportivo Alaves 18 17
17. Getafe 18 16
18. Espanyol 18 15
19. Valencia 17 12
20. Real Valladolid 18 12