11.02.2019, 12:50

Ulaştırma ve Toplu Taşıma Sistemlerinde Sıklık-3

Sıklık optimizasyonu ile ilgili mevcut çalışmalar genellikle, yaklaşık olarak çözülebilen, doğrusal olmayan modelleri içermektedir. Bu doğrusal olmama durumu, bekleme süresinin sıklıkla ters orantılı olması gerçeğinden kaynaklanmakta olup, aynı zamanda, doğrusal olmayan çözümlemelerdeki farklı hat sonuçları arasındaki etkileşimin modellenmesi ile de ilgilidir. Atama alt modellerini hesaba katan mevcut modeller, gerçek durumla değişen düzeylerde örtüşmeler göstermektedirler. Metodolojileri sınamada kullanılan durumlar, küçük boyutlulardan yaklaşık olarak 100’den fazla hattı içeren gerçek şehirleri ifade eden orta boyutlu temsili durumlarda kadar geniş bir aralıkta çeşitlenmektedir.

Bu mimari durumunun hesaba katılması dâhilinde bu tarz çalışmalar kapsamında iki önemli çıkarım belirlenebilir:

Halihazırda mevcut olan sıklık optimizasyon modeli için karma tam sayılı doğrusal programlama (MILP) modeli önerilmektedir. Önerilen formülasyon yapısının ortaya konmasıyla beraber, ticari bir karma tam sayılı doğrusal programlama (MILP) çözücüsünün kullanılması ile beraber denklem bütünüyle çözülebilmektedir. Dahası söz konusu çözümleme bir atama alt modeli içermekte olup literatür tarafından geniş bir kabulü de bulunmaktadır.

Problemin büyük boyutlu numunelerinin (100’den fazla hattı barındıran sistemler) çözülmesi amacı ile sezgisel ötesi bir model önerilmiş olup doğruluğu (mesafeyi optimuma çekme mantığı ile) hâlihazırdaki kesin modellerle (mümkün olduğunda, daha küçük numunelerde) karşılaştırma yolu ile tayin edilmektedir. İlk madde ile ilgili olarak, literatürde küresel ölçekte doğruluğu ispatlanmış bir optimallikte çözüm kabiliyeti kesin olarak olan herhangi bir yöntemin bulunmadığı not edilmelidir. Bu özellikle, nispeten daha küçük olan mevcut çözümlemelerin ortaya koyduğu kullanıcı seyahat süreleri ile ilgili raporlanan gelişmelerden dolayı, toplu taşıma sıklık optimizasyon probleminde önemlidir. Dahası mevcut verili çözüm yöntemlerinin sezgisel yapısı dâhilinde, söz konusu durum sonuçları daha fazla geliştirme noktasında ihtimal dâhilinde olsa dahi belirsiz olarak değerlendirilmektedir.

Önerilen sezgisel ötesi yaklaşım kesin çözümler ile karşılaştırma yolu ile doğruluk hesaplaması noktasında (imkân dâhilinde) çözümler geliştirme kabiliyetine sahiptir. En net olarak bilinen ise bu tarz çalışmaların, gerçek durumlu optimal olanlarıyla kıyaslandığında doğru sonuçlar veren ilk yaklaşık yöntemleri ortaya koyduğudur. Sezgisel ötesi yaklaşım sonuçlarını nispeten daha kısa sürede üretmekte ve çok terimli zamanlamalı (hat sayısına, altı çizili grafik model boyutuna ve kalkış-varış matrislerinin yoğunluğuna göre) icra edilen rutinleri içermekte olup bu nedenle daha büyük durumların çözümü için uygulanabilir görülmektedir.

Bu tarz çalışmalar kapsamında önerilen modeller ve algoritmalar, gerçek durumlarda ve uygulamalarını üzerlerinde gösteren farazi durumlarda uygulanmaktadır. Bu tarz çalışmalar kapsamında literatür, matematiksel model tanımlamaları ve önerilen ilgili formülasyon ile önerilen sezgisel ötesi yaklaşımla problemin yaklaşım çözümünün açıklanması ve sınamalı yöntemlerle sayısal sonuçların değerlendirilmesine girişilmektedir.

Bu kapsamda toplu ulaştırma sistemleri için sıklık optimizasyonu saha çalışmaları ile ilgili incelemeler ortaya konulmaktadır. Hemen her model, hat güzergâhındaki bir kesimin bitiş noktası ya da ağırlık merkezi (sendroid: verili bir zondaki talebin yoğunlaştığı kabul edilen temsili bir nokta) ve otobüs duraklarını temsilen düğüm noktalarını içeren bir grafiğe göre formüle edilmektedir. Yaylar ise hem bir hat güzergâhı kesimini, bir yürüyüş güzergâhını (ağırlık merkezleri ve istasyonlar arasında) ve hem de farklı hatlar arasındaki aktarma uygulamaları ya da bir hat için yürüme gibi bir olay ya da fiili temsil etmektedirler. Dahası tipik olarak şehrin farklı zonları arasındaki (ağırlık merkezleri ile temsil edilen) talebin, O-D çifti olarak adlandırılan, her bir elemanı sıfırdan farklı olan bir kalkış-varış (OD) matrisi şeklinde verildiği de kabul edilmektedir. Yukarıda vurgulanan grafik modelinin literatürde farklı düzeylerdeki detaylarının bulunabileceği de vurgulanmaya değer bir konudur.

1980’li yıllarda yapılan çalışmalarda önerilen model, bekleme süresine ilaveten sefer süresi ve yürüme süresinde de minimizasyonu belirtmektedir. Filo boyutunda daha yüksek bir sınırı teşvik eden bir kısıt bulunmaktadır. Kullanıcı davranışları tamamıyla modele dâhil edilmiş olup verili bir O-D çifti dâhilinde talep, bir otobüs kapasite kısıtı ve dağılımı göre farklı hatlar arasında bölünmüştür. Formülasyon konveks (dış bükey) olmayan bir amaç fonksiyonuna sahip olup doğrusal ya da konveks kısıtlara sahiptir. Çözüm algoritması, kot düşüşü stratejisine göre bir dizi sıklıktan seçim yolu ile yaklaşım bir çözüm hesabı yapmaktadır. Metodoloji bir İsveç şehri olan Linköping’deki 6 hat ve 38 zonu içeren bir durumda test edilmiştir.

Yoğun bir şekilde kullanılan hatlardaki sıklıkların düzenlenmesi için bir model önerilmiştir. Dahası amaç fonksiyonu sistemdeki herhangi bir güzergâhtaki en yoğun şekilde yüklenmiş noktanın işgal düzeyinin minimizasyonunu ifade etmektedir. Kısıt dizisi; filo boyutu ve otobüs kapasitelerinde daha yüksek sınırlar içermektedir. Atama alt modeli kullanıcı davranışı ile ilgili hipotezleri kodlayan bütünüyle açık olmayan kısıtlarca ifade edilmektedir. Yolcular; daha uzun seyahat sürelerine neden olsa da, doğrudan varış noktasına yönlendiren (herhangi bir aktarma olmaksızın) hatları tercih etme eğiliminde olmaktadırlar. Bu kuralın yanı sıra verili bir O-D çifti ile ilgili talep, sıklık oranı kuralına göre farklı hatlar arasında dağılmaktadır. Modelin çözümünde iki aşamalı bir sezgisel yaklaşım önerilmektedir: ilk olarak; otobüs kapasite kısıtlarında daha az sınırlılık yakalanması için temel bir tahsisat prosedürü (hat sıklıklarını ve yolcu akımlarını iterasyonla belirleyen) uygulanır, ardından da ilave bir tahsisat (paylaşım) prosedürü ile sadece doğrusal kısıtlar dâhilinde problem çözümü gerçekleştirilir. Önerilen metodoloji Mısır’ın Kahire şehrinde uygulanmış olmasına karşın tanımlama sadece 6 düğüm noktası ve 3 güzergah için gösterilmiştir.

Yorumlar (0)
banner117
15
açık
banner153
Puan Durumu
Takımlar O P
1. Galatasaray 12 34
2. Fenerbahçe 12 29
3. Samsunspor 13 26
4. Eyüpspor 13 22
5. Göztepe 12 21
6. Beşiktaş 12 21
7. Sivasspor 13 18
8. Başakşehir 12 16
9. Rizespor 12 16
10. Gaziantep FK 12 15
11. Kasımpasa 13 15
12. Konyaspor 13 15
13. Antalyaspor 12 14
14. Trabzonspor 11 12
15. Kayserispor 12 12
16. Alanyaspor 12 11
17. Bodrumspor 13 11
18. Hatayspor 12 7
19. A.Demirspor 11 2
Takımlar O P
1. Kocaelispor 13 26
2. Bandırmaspor 13 25
3. Karagümrük 13 24
4. Erzurumspor 13 22
5. Igdir FK 12 21
6. Boluspor 13 21
7. Ahlatçı Çorum FK 13 20
8. Ankaragücü 13 19
9. Esenler Erokspor 13 18
10. Keçiörengücü 13 18
11. Şanlıurfaspor 13 18
12. Ümraniye 13 18
13. Gençlerbirliği 13 18
14. Pendikspor 13 18
15. İstanbulspor 13 17
16. Manisa FK 13 17
17. Amed Sportif 12 14
18. Sakaryaspor 13 14
19. Adanaspor 13 8
20. Yeni Malatyaspor 13 -3
Takımlar O P
1. Liverpool 12 31
2. M.City 12 23
3. Chelsea 12 22
4. Arsenal 12 22
5. Brighton 12 22
6. Tottenham 12 19
7. Nottingham Forest 12 19
8. Aston Villa 12 19
9. Newcastle 11 18
10. Fulham 12 18
11. Brentford 12 17
12. M. United 12 16
13. Bournemouth 12 15
14. West Ham United 11 12
15. Everton 12 11
16. Leicester City 12 10
17. Wolves 12 9
18. Ipswich Town 12 9
19. Crystal Palace 12 8
20. Southampton 12 4
Takımlar O P
1. Barcelona 14 34
2. Real Madrid 13 30
3. Atletico Madrid 14 29
4. Villarreal 13 25
5. Athletic Bilbao 14 23
6. Osasuna 14 22
7. Girona 14 21
8. Mallorca 14 21
9. Real Betis 14 20
10. Real Sociedad 14 18
11. Celta Vigo 14 18
12. Sevilla 14 18
13. Rayo Vallecano 13 16
14. Leganes 14 14
15. Getafe 14 13
16. Deportivo Alaves 14 13
17. Las Palmas 14 12
18. Valencia 12 10
19. Espanyol 13 10
20. Real Valladolid 14 9